充要条件,必要条件,充分条件之间的联系:充分条件:有A这个条件一定能推出B这个结果,但是有B这个结果不一定能推出A这个唯一条件。必要条件:有B这个结果一定能推出A这个条件,但是A这个条件不能推出B这个结果。充要条件:条件A能推出结果B,结果B能推出条件A。
充分条件:如果A能推出B,那么A就是B的充分条件。其中A为B的子集,即属于A的一定属于B,而属于B的不一定属于A,具体的说若存在元素属于B的不属于A,则A为B的真子集;若属于B的也属于A,则A与B相等。
必要条件:如果没有A,则必然没有B;如果有A而未必有B,则A就是B的必要条件,记作B→A,读作“B蕴涵于A”。数学上简单来说就是如果由结果B能推导出条件A,我们就说A是B的必要条件。
充要条件:如果有事物情况A,则必然有事物情况B;如果有事物情况B,则必然有事物情况A,那么B就是A的充分必要条件(简称:充要条件),反之亦然。