对式子f(x)求导之后得到导数为f'(x),添加dx,即f'(x)dx就是微分。如果是导函数连续,则左右导数一样;如果存在分段点,绝对值式子等,左右导数就可能不相等,需要再进行讨论。
求函数的左右导数可以用定义求左右导数,如果左右导数存在且都是A,则导数是A。这样做的好处是避免出错,如果想用左右对应法则的导函数来求,可用导数极限定理:f(x)在x0的邻域内连续,在去心邻域内可导,lim(x→x0f'(x)=A,则f'(x0)=A。
对式子f(x)求导之后得到导数为f'(x),添加dx,即f'(x)dx就是微分。如果是导函数连续,则左右导数一样;如果存在分段点,绝对值式子等,左右导数就可能不相等,需要再进行讨论。
求函数的左右导数可以用定义求左右导数,如果左右导数存在且都是A,则导数是A。这样做的好处是避免出错,如果想用左右对应法则的导函数来求,可用导数极限定理:f(x)在x0的邻域内连续,在去心邻域内可导,lim(x→x0f'(x)=A,则f'(x0)=A。