泰勒公式是在一点处展开,函数必须在那一点处n阶倒数存在,在x=0处是麦克劳林展开式,一般在极限里面用的是麦克劳林展开公式,所以必须x趋于0的时候才能使用。
x趋于0才能使用是说极限式里面的x趋于0,然后可以用麦克劳林公式做展开,而且必须是x=0处展开,泰勒实际上就是高级的等价无穷小替换,如果说展开的高阶小o(x)不是趋于0的,那就错了。这也就是说麦克劳林仅仅替代了那个x0=0,然后就将一个复杂的函数转换成了一个简单的幂次函数,并且这个幂次函数在x0=0的某邻域是成立的。
泰勒公式是在一点处展开,函数必须在那一点处n阶倒数存在,在x=0处是麦克劳林展开式,一般在极限里面用的是麦克劳林展开公式,所以必须x趋于0的时候才能使用。
x趋于0才能使用是说极限式里面的x趋于0,然后可以用麦克劳林公式做展开,而且必须是x=0处展开,泰勒实际上就是高级的等价无穷小替换,如果说展开的高阶小o(x)不是趋于0的,那就错了。这也就是说麦克劳林仅仅替代了那个x0=0,然后就将一个复杂的函数转换成了一个简单的幂次函数,并且这个幂次函数在x0=0的某邻域是成立的。