无穷减无穷等于可以等于任何数或者无穷大。例如,当x趋近于0时,a=1/x,b=1/x,a、b都趋近于无穷大,但是a-b=0。a=1/x,b=1/2x,a、b都趋近于无穷大,则a-b=1/x,也为无穷大。
设函数f(x)在x0的某一去心邻域内有定义或|x|大于某一正数时有定义。如果对于任意给定的正数M(无论它多么大),总存在正数δ或正数X,只要x适合不等式0<|x-x0|X,即x趋于无穷),对应的函数值f(x)总满足不等式|f(x)|>M,则称函数f(x)为当x→x0(或x→∞)时的无穷大。
无穷减无穷等于可以等于任何数或者无穷大。例如,当x趋近于0时,a=1/x,b=1/x,a、b都趋近于无穷大,但是a-b=0。a=1/x,b=1/2x,a、b都趋近于无穷大,则a-b=1/x,也为无穷大。
设函数f(x)在x0的某一去心邻域内有定义或|x|大于某一正数时有定义。如果对于任意给定的正数M(无论它多么大),总存在正数δ或正数X,只要x适合不等式0<|x-x0|X,即x趋于无穷),对应的函数值f(x)总满足不等式|f(x)|>M,则称函数f(x)为当x→x0(或x→∞)时的无穷大。