拿破仑定理是什么

2022-09-18 22:03 文化百科 3669阅读 投稿:知识酷
最佳答案拿破仑定理是:以任意三角形的三条边为边,向外构造三个等边三角形,则这三个等边三角形的外接圆中心恰为另一个等边三角形的顶点。拿破仑定理是法国著名的军事家拿破仑·波

拿破仑定理是:以任意三角形的三条边为边,向外构造三个等边三角形,则这三个等边三角形的外接圆中心恰为另一个等边三角形的顶点。拿破仑定理是法国著名的军事家拿破仑·波拿巴已知最早提出的一个几何定理。

拿破仑·波拿巴是十九世纪法国伟大的军事家、政治家,法兰西第一帝国的缔造者。历任法兰西第一共和国第一执政,法兰西第一帝国皇帝。他在位期间,对内多次镇压反动势力的叛乱,颁布了《拿破仑法典》,完善了世界法律体系,奠定了西方资本主义国家的社会秩序。在最辉煌时期,欧洲除英国外,其余各国均向拿破仑臣服或结盟,形成了庞大的拿破仑帝国体系,创造了一系列军政奇迹与短暂的辉煌成就。

扩展资料

拿破仑定理的验证推导:

在△ABC的各边上向外各作等边△ABF,等边△ACD,等边△BCE。

如何证明:这3个等边三角形的外接圆共点?

思路:利用四点共圆来证明三圆共点。这是证明拿破仑定理的基础。

证明:设等边△ABF的外接圆和等边△ACD的外接圆相交于O;连AO、CO、BO。

∴ ∠AFB=∠ADC=60°;

∵ A、F、B、O四点共圆;A、D、C、O四点共圆;

∴ ∠AOB=∠AOC=120°;

∴ ∠BOC=120°;

∵ △BCE是等边三角形

∴ ∠BEC=60°;

∴ B、E、C、O四点共圆

∴ 这3个等边三角形的外接圆共点。

结论:因为周角等于360°,所以,∠AOB=∠AOC=120°时,∠BOC就等于120°;用四点共圆的性质定理和判定定理来证明三圆共点的问题。

拿破仑定理的证明方法:

思路:利用已有的三个圆和三个四点共圆来证明。

证明:设等边△ABD的外接圆⊙N,等边△ACF的外接圆⊙M,等边△BCE的外接圆⊙P

相交于O;连AO、CO、BO。

∵ A、F、B、O四点共圆;

A、D、C、O四点共圆

B、E、C、O四点共圆

∠AFC=∠ADB=∠BEC=60°;

∴ ∠AOB=∠AOC=∠BOC=120°;

∵ NP、MP、MN是连心线;

BO、CO、AO是公共弦;

∴ BO⊥NP于X;

CO⊥MP于Y;

AO⊥NM于Z。

∴ X、P、Y、O四点共圆;

Y、M、Z、O四点共圆;

Z、N、X、O四点共圆;

∴ ∠N=∠M=∠P=60°;

即△MNP是等边三角形。

声明:所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系